The Nealon Equation |
y = (A*sin(B*x+C) + D*sin(E*x+F) + G*sin(H*x+I) + J*sin(K*x+L)) * (M + N*x + O*x^2 + P*x^3 + Q*x^4) * atan(R*x) * atan(S*(BL-x)) |
Grellier Gibson L - 00 1940 |
http://grellier.fr/plans.php?lang=fr
“Il manque juste le dessin du truss-rod.” - Monsieur Grellier
“J’ai terrassé les dragon.” - M Nealon |
(A*sin(B*x+C) + D*sin(E*x+F) + G*sin(H*x+I) + J*sin(K*x+L) + M*sin(N*x+O) +P*sin(Q*x+R) +AA*sin(BB*x+CC))* (S + T*x + U*x^2 + V*x^3 + W*x^4) * atan(Y*x) * atan(Z*(19.324-x)) |
A = -4.870808371497193E+02 B = -7.040688233980210E-01 C = 4.120054533938742E+00 D = -4.306401301536174E+02 E = 4.977584629453556E-01 F = -4.580063958661442E+00 G = 1.139460743838969E+02 H = -3.629481318224734E-01 I = 5.967975949921605E+00 J = -2.931127947916925E+02 K = 7.910758005121563E-01 L = 1.073424492625578E+00 M = 5.936152674811037E+02 N = 5.828210191651341E-01 O = 6.864819467929281E+00 P = 6.659725076181603E+01 Q = 8.798978774860676E-01 R = 1.324604536132214E-03 AA = -3.062480293785913E-02 BB = 2.244453482002917E+00 CC = -8.624304510787958E+00 S = 6.947610996856965E-02 T = -2.515897740961353E-02 U = 1.718899684067937E-02 V = -1.937105082084855E-03 W = 6.223972835296340E-05 Y = 4.677375788356206E+01 Z = 3.321710132644738E+01 |
Coefficients for the Grellier Gibson L-00 1940 guitar 28 Coefficients |
This is the best fit I have gotten of all the instruments so far. Chi squared = .008231 This is getting a little bit out of hand, but I had to use 28 coefficients to obtain such a fit. Well, at least with modern graphing programs the coefficients can be entered easily - having so many doesn’t make any more work. I believe that such good fits are required for machining precise body molds and patterns.
|
View of the side in Mathematica. |
|
|
Graphed in Curve Expert Pro |
Grellier’s Gibson L - 00 1940 |
|